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Small-scale production

Single-item production (e.g., prototypes)

Products with …  

… many variants

… high reconfigurability

Motivation – New Requirements in Production

Flexible production
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Commerce:

Picking and palletizing of products

Stocking shelves

Quality assurance

Care:

Support in rehabilitation and care

Craft industry:

Handling in carpentries and 
metalworking companies

Motivation – New Requirements in the Service Sector
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Manipulation of arbitrary objects

Independent solving of complex tasks

Deployment next to humans

Motivation – Requirements to Humanoid Robots

Complex environment!

& 

Many degrees of freedom!

How to program robots?
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Observe humans

Interpret human 
demonstrations

Map to robot

Programming by Demonstration (PbD)
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Contents
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Planning

Not relevant for the exam 
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Robot Programming Approaches

online

direct

offline

graphical

PbD

Interactive 
approaches

Hybrid
approaches

textual

Leader-Follower

Movement-
oriented

Task-oriented

Teach-In

Approach and store 
points

𝑃1

𝑃2

Play-Back

Approach and store 
trajectory

Capture workpiece 
contour

Sensor-assisted

Employ kinematic 
models

𝑃1 𝑃4

GOTO P4

𝑃1 𝑃4

𝑃3𝑃2

GOTO P2
GOTO P3
GOTO P4
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Classifying Robot Programming Approaches

Criteria:
I. Location of programming

• Online programming 

• Offline programming 

II. Degree of abstraction of programming
• Implicit programming

• Explicit programming

III. Type of programming
• Direct programming

• Textual approaches

• Graphical approaches

• Hybrid approaches
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Robot Programming Approaches

online offline

The programming is done 
directly on the robot (at the 
robot controller).

In the literature, this is
also referred to as direct
programming.

The programming is done 
without the robot using 
textual, graphical, 
interactive methods.

In the literature, this is also 
referred to as indirect
programming.

Hybrid
approaches
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Classifying Robot Programming Approaches

Criteria:
I. Location of programming

• Online programming 

• Offline programming 

II. Degree of abstraction of programming
• Explicit programming

• Implicit programming

III. Type of programming
• Direct programming

• Textual approaches

• Graphical approaches

• Hybrid approaches
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Degree of Abstraction of Programming

Explicit or robot-oriented programming (imperative)

Movements and gripper commands are directly embedded into a programming language

P1 P4

P3P2

GOTO P2
GOTO P3
GOTO P4

„How is it done?“
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Degree of Abstraction of Programming

Implicit or task-oriented programming (declarative)

The task to be executed by the robot is described, e.g. based on states.

The abstract form of programming is carried out in the following steps:
1. 1. Modeling the environment

2. 2. Specifying the task

3. 3. Generating robot programs

The execution of the robot program can be verified in simulation.

P1 P4

GOTO P4

„What is to be done?“
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Classifying Robot Programming Approaches

Criteria:
I. Location of programming

• Online programming 

• Offline programming 

II. Degree of abstraction of programming
• Explicit programming

• Implicit programming

III. Type of programming
• Direct programming

• Textual approaches

• Graphical approaches

• Hybrid approaches
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Direct Robot Programming Approaches

online

direct

offline

graphical

PbD

Interactive 
approaches

Hybrid
approaches

textual

Leader-Follower

Movement-
oriented

Task-oriented

Teach-In

Approach and store 
points

𝑃1

𝑃2

Play-Back

Approach and store 
trajectory

Capture workpiece 
contour

Sensor-assisted

Employ kinematic 
models

𝑃1 𝑃4

GOTO P4

𝑃1 𝑃4

𝑃3𝑃2

GOTO P2
GOTO P3
GOTO P4
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Direct Programming

Teach-In programming

Play-Back programming 

Leader-Follower programming 
(special case teleoperation)

Sensor-assisted programming

direct

Teach-In

Approach and store 
points

𝑃1

𝑃2

Play-Back

Approach and store 
trajectory

Capture workpiece 
contour

Sensor-assisted Leader-Follower

Employ kinematic 
models
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Direct Programming: Teach-In

Teach-In programming 
Approach distinctive points of the trajectory with manual control
(Teach Box, Teach Panel)

Functionality of a Teach Box:
Individually control joints

Control end effector in Cartesian space

Safe and remove points

Input of velocities

Input of gripper control commands

Starting and stopping whole programs

Teach-In

Approach and store 
points

𝑃1

𝑃2
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Example: Teach Box of Mitsubishi RM-501
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Direct Programming: Teach-In

Approach during Teach-In

Approach distinctive points of the trajectory

Trajectory = Sequence of via points

Store joint angles

Afterwards add certain parameters to stored joint angles, such as velocity, 
acceleration, etc. 

Application:
In manufacturing (spot-welding, riveting)

Manipulation tasks (take parcels from conveyor belt)
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Direct Programming: Play-Back

Play-Back (manual) programming

Set robot to zero torque control (Robot can be guided by operator)
Also called kinesthetic teaching
Follow desired trajectory with robot
Store joint angles:

Automatic (pre-defined sampling frequency) or
Manual (by key press)

Application:
Mathematically hard to describe movements
Integration of domain knowledge of the operator (e.g., craftmanship)
Typical areas of application: Lacquering, painting, gluing

Play-Back

Approach and store 
trajectory
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Direct Programming: Play-Back

Play-Back (manual) programming
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Direct Programming: Play-Back

Disadvantages of Play-Back programming:
Direct contact with robot → safety hazard

High storage requirements with high sampling frequency 
(nowadays not an issue anymore)

Means of corrections rather limited

Play-Back

Approach and store 
trajectory



Robotics I: Introduction to Robotics | Chapter 1023

Direct Programming: Leader-Follower

Leader-Follower programming:
Operator guides a another (e.g., smaller and easier-to-move)
leader robot, being a kinematic model of the follower robot

Movements are transferred to follower robot
Movements are executed synchronously

Applications:
Handling of large payloads or large robots
Collecting dexterous bimanual demonstrations
(e.g., ALOHA)

Advantages and disadvantages:
Enables programming very heavy robots
Enables a human to act through a robot
Tends to be expensive, two robots are needed

Leader-Follower

Employ kinematic 
models

ALOHA 2 Team (2024)

Tony Z. Zhao, Vikash Kumar, Sergey Levine, Chelsea Finn: Learning Fine-

Grained Bimanual Manipulation with Low-Cost Hardware. RSS’23.
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Direct Programming: Sensor-Assisted

Sensor-assisted programming
Manual

Operator guides programming pen along the trajectory to be followed
Capture the movement with external sensors (e.g., cameras, laser 
scanners) 
Calculate inverse kinematics
Store trajectory as sequence of joint angle values

Automatic
Specify start and goal points
Sensory sampling of expected contour (e.g., via force-torque sensor)

Disadvantages: 
Errors during capturing of the trajectory; occlusions of parts of the 
trajectory
No inclusion of the operator’s experiences and domain knowledge

Applications:
Grinding, sanding, deburring of work pieces

Capture workpiece 
contour

Sensor-assisted
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Direct Programming: Summary

Advantages:
Fast for simple trajectories
Immediately executable
Robust to certain errors
No programming knowledge of operator required 
No environment model necessary

Disadvantages:
High effort for complex trajectories
Only feasible on the robot and with the robot
Specific to the respective robot
Risk of injury through robot
No adaptation to new circumstances
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Textual Robot Programming Approaches

online

direct

offline

graphical

PbD

Interactive 
approaches

Hybrid
approaches

textual

Leader-Follower

Movement-
oriented

Task-oriented

Teach-In

Approach and store 
points

𝑃1

𝑃2

Play-Back

Approach and store 
trajectory

Capture workpiece 
contour

Sensor-assisted

Employ kinematic 
models

𝑃1 𝑃4

GOTO P4

𝑃1 𝑃4

𝑃3𝑃2

GOTO P2
GOTO P3
GOTO P4
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Textual Robot Programming Approaches

Programming using an extended, higher-level programming language such as 
PASRO, VAL, V+ (Unimation/Stäubli), RAPID (ABB), KRL (KUKA), … 

→ Robot control program

Advantages:

Programming can be done independent of the robot

Structured, clear programming logic

Write complex programs
(Making use of knowledge base, world or environment model, sensors) 

Disadvantages:

Operator needs programming knowledge
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Textual Robot Programming Approaches: DIN 66025

Command coding according to DIN 66025

Program = List of numbered sets

Example:
N70 G00 X20 Z12 

Move tool with rapid traverse (G00) to position X=20 and Z=12.
(N = set number)

Languages: 
APT (Automatically Programmed Tools) 1961 MIT
EXAPT (Extended Subset of APT) 1966 TH Aachen

Example
P1=POINT/20,12 Variable definition
Rapid Rapid traverse
GOTO/P1 Positioning at P1
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Textual Robot Programming Approaches : SPS

VPS: Connection-programmed control (German: “Verbindungsprogrammierte
Steuerung”, historic)

Control done through hardware
„Program change“ = Hardware change 

PLC: Programmable Logic Controller (German “SPS: Speicherprogrammierbare
Steuerung”)

Control procedure is programmed
Large flexibility
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Hybrid Robot Programming Approaches

online

direct

offline

graphical

PbD

Interactive 
approaches

Hybrid
approaches

textual

Leader-Follower

Movement-
oriented
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Teach-In

Approach and store 
points

𝑃1

𝑃2

Play-Back

Approach and store 
trajectory

Capture workpiece 
contour

Sensor-assisted

Employ kinematic 
models

𝑃1 𝑃4

GOTO P4

𝑃1 𝑃4

𝑃3𝑃2

GOTO P2
GOTO P3
GOTO P4
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Hybrid Approaches 

Graphical programming based on capturing the user demonstration with sensors

→ Simulation of robot programs

Advantages:
Programmer needs less programming knowledge compared to textual programming
Easy programming, easy error detection
Fast creation of complex programs (rapid prototyping)

Disadvantages:
Sensory capturing still too imprecise (as with all online methods)
Capable hardware for signal analysis, modelling, … needed
Complex models needed
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Graphical Robot Programming Approaches

online

direct

offline

graphical

PbD

Interactive 
approaches

Hybrid
approaches

textual

Leader-Follower

Movement-
oriented

Task-oriented

Teach-In

Approach and store 
points

𝑃1

𝑃2

Play-Back

Approach and store 
trajectory

Capture workpiece 
contour

Sensor-assisted

Employ kinematic 
models

𝑃1 𝑃4

GOTO P4

𝑃1 𝑃4

𝑃3𝑃2

GOTO P2
GOTO P3
GOTO P4
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Graphical Robot Programming Approaches

Two fundamentally different variants

Virtual Teach-In
Manipulation of robot and 
environment in 3D visualization 

Store movements

Needs accurate 3D model of robot 
and environment

Graphical modelling formalisms
Finite state machines

Petri nets

Statecharts
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Representation of Robot Actions Using Statecharts

Why Statecharts to program robots?

Learn actions from observation of humans is one of the most difficult problems
Perception
Embodiment
Uncertainties during execution

Textual action programming is hard
System complexity
Robot skills are heavily state-dependent
Skills usually consist of subskills
Textual programming can be unclear

→Graphical programming of robot actions: Statecharts
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Graphical Modeling Formalisms

Harel Statechart formalism (Harel, 1987)
Graphical Formalism to design complex systems

Key features:
Hierarchical
Interlevel transitions
Orthogonality
State Actions: Hooks “Entry”, “Exit”, “Throughout”

Limitation: No data flow specification

Harel,1987

• A, B, C und D are states
• Letters on the edges indicate 

events; conditions are 
specified in parantheses

D. Harel, Statecharts: A visual formalism for complex systems, Science of computer programming 8.3, pp. 231-274, 1987

D

A

C

B𝜸(𝐏)

𝛂

𝜷

𝛅
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Statecharts (1)

State 1

State 1.1 State 1.2

State
1.1.1

State
1.1.2

State
1.2.1

State
1.2.2

State
1.1.3

State
1.2.3

Key Feature “Hierarchical”

State 1 is top-level state

State 1.1 and state 1.2 are substates of 
state 1

State 1.1 and state 1.2 contain 
additional substates

On entering a state, its initial substate 
will be entered
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Statecharts (2)

State 1

State 1.1 State 1.2

State
1.1.1

State
1.1.2

State
1.2.1

State
1.2.2

State
1.1.3

State
1.2.3

Key Feature “Interlevel Transitions”

Transitions can occur between 
hierarchy layers
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Statecharts (3)

Parallel execution of both states

State 1

State 1.1 State 1.2

State
1.1.1

State
1.1.2

State
1.2.1

State
1.2.2

State
1.1.3

State
1.2.3

Key Feature “Orthogonality”

A dashed line marks the parallel 
execution of states 1.1 and 1.2
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Statecharts (4)

entry
exit
throughout

State 1

State 1.1

State
1.1.1

State
1.1.2

State
1.1.3

Key Feature “State Actions”

On entering state 1, the action entry
will be executed before entering state 
1.1

While state 1.1 is being executed, the 
action throughout will be executed

After exiting state 1.1 and before 
leaving state 1, the action exit will be 
executed
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No data flow specification
Data flow is important for robots: results of states are needed
in follow-up states

Example: Object localization is needed for visual servoing or
inverse kinematics

Reusability requires adaptation of parameters
Control parameters

Kinematics parameters

Object parameters

….

Limitations of the Harel Statechart Formalism

Harel,1987

D

A

C

B𝜸(𝐏)

𝛂

𝜷

𝛅
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Extension of the Harel Statechart Formalism at H2T

ArmarX Statechart extension: https://armarx.humanoids.kit.edu

Data flow specification: Transition-based data flow

No Inter-level transitions, since they hinder state reusability

Success and Failure states in each state

Dynamic structure

Distributed over several hosts

Connection of graphical control and data flow specification 
with C++ user code

M. Wächter, S. Ottenhaus, M. Kröhnert, N. Vahrenkamp and T. Asfour, The ArmarX Statechart Concept: 
Graphical Programming of Robot Behaviour, Frontiers - Software Architectures for Humanoid Robotics, 2016

State 2

State 1

Success Failure

Remote State 3

https://armarx.humanoids.kit.edu/
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Input

Statechart Extension

Transition-based data flow

Arbitrary data types
Elemental data types: int, float, string, …
Complex data types: Positions, Poses, Matrices, 
Lists, …

Three parameter sets per state
Input, Local, Output

Parameter mappings per transition
Of output parameters of the source state …
… to input parameters of the target state

Specified data flow
→ No side effects through global variables

Previous State

Event
Parameters

Local Parameters

key1: value1

key2: value2

key3: value3

Output Parameters

key1: value1

key2: value2

key3: value3

Input Parameters

key1: value1

key2: value2

key3: value3

Parent State

… … …

Next State

Parameter mappings

Output
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Statechart Extension (1)

State 2

State 1

Success Failure

Remote State 3

State 1

Success

Failure

State 4

State 3

State 4

Statechart Group 1 on Host X

No Substates No Substates

Statechart Group 2 on Host Y

Distributed Statecharts

Distribution across several hosts

Transparent distribution of Statecharts

Network middleware ZeroC Ice (https://zeroc.com)  

Substates can be pointers to remote states 
(green states)

Benefits:

Load balancing

Increased robustness and error tolerance

Closer to the employed hardware (sensors or 
actuators)

https://zeroc.com/
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Remote: Group 2
State: State 3

Dynamic Structure
Exchange of substates during runtime
Transparent connection to arbitrary remote state
Substates specified through parameter mappings
Use-case: Execution of generated plans

Fully integrated into the robot development 
framework ArmarX

Graphical editor
Connection to all robot components
Online inspection of the current execution

State 2

State 1

Success Failure

Dynamic 
Remote State 

State 1

Success

Failure

State 4

State 3

State 4

No Substates No Substates

Statechart Group 2 on Host YStatechart Group 1 on Host X

Statechart Extension (2)
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Graphical Statechart Editor in ArmarX

Tool for graphical 
specification of:

Control flow

Data flow

Independent of 
existing robot 
components

Directly linked 
with C++ code
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Graphical Statechart Editor in ArmarX: Example
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ARMAR-III: Approx. 330 Statecharts implemented

Manipulation Skills Via Statecharts
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Contents

Motivation

Classical robot programming (overview)

Graphical robot programming (statecharts)

Programming by Demonstration
Key questions of programming by demonstration
Capturing human demonstrations
Learning task models
Execution on a robot

Planning



Robotics I: Introduction to Robotics | Chapter 1050

Literature

More details in the lecture Robotics II

Here: Basics

Literature:

B. Argall, S. Chernova, M. Veloso and B. Browning, A survey of robot learning from 
demonstration, Robotics and Autonomous Systems, 2009.

A. Billard, S. Calinon, R. Dillmann and S. Schaal, Robot Programming by Demonstration, 
In Handbook of Robotics, Springer, pp. 1371-1394, 2008.
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Learning from observation of human

Basic Idea 
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Programming by Demonstration (PbD)

Main goal of programming by demonstration
Intuitive robot programming without expert knowledge

Learning of task models from human demonstrations

PbD implies learning and generalization. Therefore, it is no playback approach.

The research area is also known as
Learning from/by demonstration (LfD)

Learning from human demonstration (LfD)

Apprenticeship learning

Imitation learning (IL)

Programmieren durch Vormachen (PdV, German)
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Models

Learning From Human Observation 

Observation

Observation of human 
motions and actions 

Observation of object 
motions

Reproduction

Evaluation of success 

Learning from experience 

Model refinement 

Generalization

Learning generalized 
representations of actions

Learning task constraints
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Three Reasons for PbD / Imitation Learning

Powerful mechanism for complexity reduction of the search during learning 
(in contrast to brute force)

Good demonstrations can be chosen as starting point to learn a skill 

Bad demonstrations can either be removed from the search space or taken as a 
negative example

Implicit mechanism to train a robot that reduces or even completely 
eliminates explicit and tedious manual programming

Understand coupling and learn relevant relations between perception and 
action



Robotics I: Introduction to Robotics | Chapter 1055

Challenges in PbD / Imitation Learning

1. Whom to imitate?

Choosing a demonstrator whose behavior can benefit the imitator
(teacher selection)

This problem is usually avoided in most methods by defining the teacher
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Challenges in PbD / Imitation Learning

2. When to imitate?

The imitator has to segment and identify the beginning and end of a shown behavior

The imitator has to decide if the observed behavior is appropriate in the current 
context, and also how many times this behavior should be repeated

This problem is usually avoided in most methods by explicitly marking the starts and 
ends of demonstrations.
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Challenges in PbD / Imitation Learning

3. What to imitate?

How to determine what aspects of a demonstration are of interest? For some tasks 
it is about the movements (trajectories) of the human. In others, the results and 
effects of actions are important.

Some observable properties are irrelevant and can be ignored. Examples: is it 
important that the teacher always approaches the table from the north?

For continuous control tasks, this corresponds to determining the feature space for 
learning, as well as constraints and the cost function.

For discrete control tasks, such as those treated by reinforcement learning and 
symbolic reasoning, this corresponds to defining the state and action space, and the 
automatic learning of pre and post conditions (constraints).
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Challenges in PbD / Imitation Learning

4. How to imitate?

Determine how the robot will actually perform the learned behaviors to maximize 
the metric found when solving the “what to imitate” problem

A robot cannot act exactly in the same way as a human, due to differences in physical 
embodiment

Example: if the demonstrator uses a foot to move an object, is it acceptable for a wheeled 
robot to bump it, or should it use a gripper instead?

The robot has to learn how to imitate by mapping perception into a sequence of 
motion actions related to its own body

Embodiment of the robot and its body constraints determine how observed action can be 
imitated (correspondence problem)
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Perceptual and Physical (In-)Equivalence

Two different ways to determine, whether the state of a teacher 
(human) and the learner (robot) correlate.

Perceptual Equivalence: Due to differences in the human’s 
and the robot’s sensor capabilities, the scene may appear 
entirely different. For example, a human perceives other 
humans through color and intensity, while a robot may use 
depth information in addition.

Physical Equivalence: Due to different embodiments, humans 
and robots execute actions differently (or different actions) to 
achieve the same physical effects.

[Billard et al. 2008] 
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Challenges in PbD / Imitation Learning

Who should be imitated?

When should be imitated?

What should be imitated?

How should be imitated?

Mostly unresearched !

Learning of a skill or a task!
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Capturing Human Movements

Capturing human movements is the starting point for programming by demonstration

Two Approaches

Marker-based Approaches:
Marker are attached to predefined anatomic landmarks on the human body

Marker may be active (e.g., coding via LED) or passive (e.g., reflecting)

Subject must be prepared for capturing

Markerless Approaches:
Direct reconstruction of the human pose from camera data
(RGB / depth data)

No markers on the human required
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Marker-based Passive Optical Motion Capturing

Localization of infrared-reflecting passive markers 
using a multi-camera system
Widely used solution, various commercial
providers (e.g., VICON and OptiTrack)

Advantages:
High spatial resolution (submillimeter range)
High temporal resolution (1-2 kHz possible)

Disadvantages:
Expensive and large technical effort
Efforts for required post-processing because of 
occlusions and labelling markers
Restrictions to the capturing area
(e.g., only feasible indoors)
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KIT Whole-Body Human Motion Database 

Example 

https://motion-database.humanoids.kit.edu

https://motion-database.humanoids.kit.edu/
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Marker-based Active Optical Motion Capturing

Marker transmits a coded identifier, e.g., via infrared LED

Advantages/Disadvantages similar to optic-passive systems, but:
Easier handling of marker labeling

However: Batteries/cables required to power each marker

© Qualisys
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IMU-based Motion Capture

Inertia Measurement Units (IMUs) attached to anatomically 
defined landmarks on human subjects
(e.g., 17 sensors with Xsens MVN)

Advantages:
Less constrainted environment (e.g., enabling outdoor use)

Accurate capturing of the human pose

Disadvantages:
Exact placement of IMUs required

No precise localization of human in the global reference frame
(IMU drift)

© Xsens
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Mechanical Motion Capturing

Direct measurement of joint angles
(e.g., potentiometers in exoskeletons)

Advantages:
Low requirements for the recording environment 
(e.g., outdoors)

Disadvantages:
Exoskeleton constraints human movements 
→ See lecture “Wearable Robotic Technologies“ in 
summer term

High technical efforts

No localization of human in global reference frame 
possible

Alexander Gmiterko, Tomáš Lipták,  Motion Capture of Human for 
Interaction with Service Robot, American Journal of Mechanical 
Engineering. 2013, 1(7), 212-216 doi:10.12691/ajme-1-7-12 
http://pubs.sciepub.com/ajme/1/7/12/index.html

https://metamotion.com

https://metamotion.com/
https://metamotion.com/
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Marker-less Optic Motion Capturing

Reconstruction of human pose from RGB- and/or depth data

Advantages:
Very cheap, low hardware requirements

Low requirements for capturing area

Disadvantages:
Complex algorithms and high error rate (active area of research)

Low temporal resolution, especially online

Azad et al. (2008)
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Marker-less Optic Motion Capturing

Azad et al. (2008)

Stereo vision



Robotics I: Introduction to Robotics | Chapter 1070

Marker-less Optic Motion Capturing

J. Shotton et al., Real-Time Human Pose Recognition in 
Parts from a Single Depth Image, CVPR, 2011

Skeleton tracking with depth cameras

Skeleton data are calculated from single frames

Accuracy between RGB tracking and marker-based tracking

Kinect (RGB-D)
Captured depth 
image with 
background removal

Inferred 
body parts
per pixel

Estimated 
body joint 
positions

Fitted 
skeleton 
model
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Azure Kinect body tracking (in real-time)
Deep Neural Network for human pose estimation

Nonlinear optimization for motion retargeting to MMM model

Deep-Learning-based Approaches

RGB Depth Human pose Motion retargeting

https://learn.microsoft.com/en-us/

azure/kinect-dk/body-sdk-download

MMM

https://learn.microsoft.com/en-us/azure/kinect-dk/body-sdk-download
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Motion Capture Studio at H2T 

14 Vicon Motion

Capture Cameras

GoPro Hero 8

Pair of

CyberGlove II

3 Blue Trident

IMU Sensors

3 Azure Kinect

RGB-D Cameras

Force Torque

Sensors

3 Kinect V2

RGB-D Cameras

Microphone Array

Sensorized

Exoskeleton

Multi-Modal Capturing
of Human Activities
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Contents

Motivation

Classical robot programming (overview)

Graphical robot programming (statecharts)

Programming by Demonstration
Key questions of programming by demonstration
Capturing human demonstrations
Learning task models
Execution on a robot

Planning
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Learning on two levels

Subsymbolic or sensomotoric (trajectory level)
→ Learning of a skill

Symbolic or semantic (symbolic level)
→ Learning of task models

Important Questions
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Subsymbolic or sensomotoric (trajectory level)
Learning a non-linear mapping between sensor and motor information. This is 
a representation on the lowest level.

Generalization on trajectory level

Billard, A., Calinon, S. and Dillmann, R. (2016). Learning From Humans. Siciliano, B. and Khatib, O. (eds.). 
Handbook of Robotics, 2nd Edition, Chapter 74, pp. 1995-2014. Springer

PbD – Learning a Skill

Prior knowledge

Model of the skill

Demonstration

Projection in a latent
Space of motion Generalization

Application to
a new context

Additional
information

(e.g., social cues)

Continuous
motion

Representation 
at a trajectory level

Extraction of averaged 
trajectories and 

associated variations
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Learning a wiping motion

Example: Trajectory Level
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Motion segmentation: Partition of movement trajectories into simple 
representable parts

For this, key points of a demonstration need to be identified

Criteria for segmentation required

In the configuration space and in task space

Different criteria: Changes in movement, search for specific patterns

Segmenting a Demonstration
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Local minima and maxima and pauses in task space

Criteria for Segmentation

𝑥

𝑦

Hand trajectory (x/y coordinates)

𝑃𝑖+1

𝑃𝑖−1

𝑃𝑖

no keypoint
keypoint

Criteria:

𝑡

𝑥

Hand trajectory (x coordinate) 

keypoints
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Local minima and maxima and pauses in configuration space

Criteria for Segmentation

Joint trajectory
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Example: Learning a Trajectory from RGB-D Data

A. Abramov, E.E. Aksoy, J. Dörr, K. Pauwels, F. Wörgötter, Real-Time Human Pose 
Recognition in Parts from a Single Depth Image, 3DPVT, 2010

Camera images

Tracked
Image regions

Tracking of teacher and objects via color and depth regions

Optical flow (movement patterns) are used, to track the movement between 2 frames

Segment centers per frame represent the trajectory
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PbD – Learning a Skill

Learning of action and representation often happens jointly
Representation is strongly coupled to the learning approach

Algorithms for motion segmentation: HMM, PCA, Clustering, 
Template Matching, Classification

Methods to learn a skill
Hidden Markov Models (HMM)
Dynamic Movement Primitives (DMP)
Gaussian Mixture Models (GMM)

Refining learned trajectories
Reinforcement Learning

More in the lecture “Robotics II – Humanoid Robotics”  in summer term
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Subsymbolic: 

Segmenting a motion trajectory, i.e., identifying keypoints of the demonstration

Describes the resulting segments in a generalized form (function approximation)

Advantage: Efficient learning of a motion

Disadvantage: Semantic information not considered, e.g., pre and 
postconditions

PbD – Learning a Skill
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Semantic or symbolic: 
Learning a sequence of actions that represents the demonstration.
This is the representation on the highest level.

Generalization on symbolic (task) level

PbD – Learning a Skill

Model of the skill

Demonstration

Extraction of 
pre-defined actions Generalization

Application to
a new context

Additional
information

(e.g., social cues)

Continuous
motion

Representation 
at a symbolic level

Extraction of the task
structure in terms of
pre-defined actions

Pre-determination of the set 
of controllers required for the skill

Prior knowledge

Billard, A., Calinon, S. and Dillmann, R. (2016). Learning From Humans. Siciliano, B. and Khatib, O. (eds.). 
Handbook of Robotics, 2nd Edition, Chapter 74, pp. 1995-2014. Springer
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Representation Generalization Advantage Disadvantage

Trajectory Generalization of 
motions

General representation of 
motions that allow 
encoding different kinds 
of signals or functions

Complex skills cannot 
be reproduced

Symbolic Organization of 
predefined motion 
elements

Enables learning of 
hierarchical task 
descriptions

Needs a set of 
predefined controllers 
for reproduction

Summary – Learning on Two Levels
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Example: Task Level

Learning a sequence of actions, i.e., a plan (prepare dough) 
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Observing the teacher in the environment

Extracting semantic features: States, object-object relations, 
object-hand relations, rules

The robot needs to estimate a suitable action based on the 
current world state

The world state must be determined from observations of the robot

Goal: A mapping between world state and action → Strategy for action selection

PbD – Learning Task Models – Approach
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Demonstrations mostly consist of action sequences

Understanding demonstrations is easier, if they are separated into smaller segments or 
even known actions

But:

Which actions occur and how many actions are 
unknown?

Start and end of actions is unknown

Actions blend into each other seamlessly

Task Segmentation (1)
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Task Segmentation (2)

Contact relations between objects to represent world state

Keyframes at changes of the contact relations

Each segment represents a manipulation action
Mixing dough for example contains grasping, mixing, placing, …
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Task Segmentation (3)

Object relations enable the extraction of preconditions and effects 
(postconditions) of actions for symbolic planners

Example: 
State at segment start:  LeftHand touches nothing

State at segment end:  LeftHand touches RedCup

→ Precondition: empty(LeftHand)

→ Postcondition: in(RedCup,LeftHand) ∧ ¬empty(LeftHand)
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Hierarchical Task Segmentation

Hierarchical Task Segmentation 
considering movements and relevant 
objects

Level 1: Semantic segmentation based on 
contact relations between objects

Level 2: Motion segmentation based on 
characteristics of trajectories 
(motion dynamics)

M. Wächter and T. Asfour, Hierarchical Segmentation of Manipulation Actions based on Object Relations 
and Motion Characteristics, International Conference on Advanced Robotics (ICAR), July, 2015 
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Level 1: Semantic Segmentation

Level 1:  Hand-Object relation

Level 2: Motion segment Lift RetreatShake Place

No contact Bottle in hand No contact

Approach Pour
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Level 2: Motion Segmentation

Level 1:  Hand-Object relation

Level 2: Motion segment Lift RetreatShake Place

No contact Bottle in hand No contact

Approach Pour
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Motion Characteristic Heuristic: Sliding Window

X
Y
Z

Time in seconds

Po
si

ti
o

n
 in

 m
m

Frame score:
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Motion Characteristic Heuristic: Recursive Search

X
Y
Z

Time in seconds

Po
si

ti
o

n
 in

 m
m
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Segmentation Quality Evaluation

Metric for segmentation results: Penalize missing or additional keyframes

𝑒 = 𝑚 + 𝑓 ∗ 𝑝 +

𝑖

min
𝑗
(𝑘𝑟,𝑖 − 𝑘𝑓,𝑗)

2

Mean squared error 
to the next keyframe

Penalty for missing 
and additional 

keyframes
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Evaluation: Comparison to Reference Segmentation

2 repetitions of “shake and pour”

Matched 
keyframe

Missing
keyframe

Additional
keyframe
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Marker-based Capturing of Demonstrations

Marker-based capturing of demonstrations from
Human (teacher) 

Objects

Environment

Transformation to trajectories of 6D poses using 
3D models with virtual markers

Reference model of the human body using the
Master Motor Map (MMM) data format1

1https://mmm.humanoids.kit.edu/

https://mmm.humanoids.kit.edu/
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Contents

Motivation

Classical robot programming (overview)

Graphical robot programming (statecharts)

Programming by Demonstration
Key questions of programming by demonstration
Capturing human demonstrations
Learning task models
Execution on a robot

Planning
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Mapping the learned knowledge (actions, action sequences, …) to a robot

Solving the correspondence problem: Humans and robots have different 
kinematics and dynamics

Resulting motions serve as setpoints for controllers

Execution with online adaptation and dynamic environments

Execution on a Robot
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Summary

PbD allows learning skills from human teachers and mapping the skills to 
arbitrary robots

PbD can facilitate the learning process (compared to Reinforcement Learning 
or trial-and-error methods)

The robot needs to provide a library of generic scills and should be able to 
adapt them for different contexts
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Learning type
Batch learning: The action is learned after all demonstrations/examples have been captured
Incremental learning: The action representation is continuously updated/learned after each new 
demonstration

Number und type of demonstration/example
Learning from many demonstrations
Learning from few demonstrations or a single demonstration
Learning from positive or negative demonstrations/examples

Interaction with the human during learning
Natural language: Verbal commands (here, there, now, faster, ..), clarifying dialogs to complete 
knowledge over the task, feedback, …
Gaze direction and pointing gestures of the teacher
Incorporating additional modalities, such as haptics, audio, … 

Research Questions
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More on the topic Programming by Demonstration in the 
Lecture “Robotics II – Humanoid Robotics“ in the summer 
term
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Programming by Demonstration

Planning
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Symbolic Planning

A problem defines a state space 𝜣:
𝑆, finite set of states (consisting of symbols)

𝐴, finite set of actions (consisting of name, preconditions, effects)

𝑐: 𝐴 → ℝ0
+, cost function

𝐼 ∈ 𝑆, initial state

𝑆𝐺 set of goal states

Classical assumptions:
Finite number of states (discrete)

Single agent (no other agents or opponents)

Fully observable (agent knows and perceives everything)

Deterministic (every action has exactly one following state)

Static (no dynamic state changes)
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Symbolic Planning – Solving a Problem

Definition of „Plan“
Oxford Leaner’s Dictionaries: plan, noun

Intention: something that you intend to do or achieve

Arrangement: a set of things to do in order to achieve something, especially one that has been 
considered in detail in advance

Further meanings: map, drawing, a way to invest money

Technical view:
Sequence of parametrized actions to achieve a predefined goal

The shortest plan is called optimal

Planning:
Finding an (optimal) plan for a problem

https://www.oxfordlearnersdictionaries.com/definition/english/plan_1, accessed February 05, 2025
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STRIPS

„STanford Research Institute Problem Solver“ (Fikes, 1971)
One of the first, and most widely known, languages to describe planning 
problems. Developed in 1971 by Fikes and Nilson to control the robot „Shakey“

Very simple, thus also limited

Derived from STRIPS:
Action Description Language (ADL)
Planning Domain Definition Language (PDDL)

Planning domain in STRIPS:
States
Actions, all having the same costs: 𝑐 𝑎 = 1, ∀ 𝑎 ∈ 𝐴
Goals

R. Fikes and N. Nilsson (1971). STRIPS: a new approach to the application of theorem proving to problem solving. Artificial Intelligence, 2:189-208.
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LLM As Planner
(SayCan, Code As Policies, PaLM-E, Progprompt) 

LLM With Planner
(LLM+P, AutoTAMP, Delta, COWP)

Large Language Models for Task Planning

User 
Task

Context

Plan

LLM

User 
Task

Context LLM

Goal
State

Domain

Initial
State

Plan

Planner

User 
Task

LLM With 
Planner

LLM as Planner

Plan

AutoGPT+P

− Fails if robot has not detected all objects
+ Plans are always optimal
+ Definition and strict following of rules 

increases safety

+ Dynamic handling of changing 
environment and reactions to errors

− Plans are not always optimal
− The LLM can cause the robot to    

perform unsafe actions
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AutoGPT+P: LLM+P with Self-Correction

Predicates

Object
Affordance

Mapping 
PDDL

Domain

PDDL 
Problem 

Initial 
State

Task in 
Natural 

Language

Large 
Language 

Model

Planner Plan

GivenFrom Memory

PDDL-Goal

Semantics 
and Syntax 

Checker

Error 
Message

Objects

Object
Relations

Actions, 
Agents & 

Costs

inhand spray_bottle human
Inhand spray_bottle robot

“The spray bottle 
cannot be in the 
robot’s and the 
human’s hand at 
the same time”

inhand spray_bottle human

“Pick up the 
spray bottle 
and bring it to 
me”

Self-correction improves success rate by 20%
Birr, T., Pohl, C., Younes, A. and Asfour, T., AutoGPT+P: Affordance-based Task 
Planning using Large Language Models, Robotics: Science and Systems (RSS), 2024


